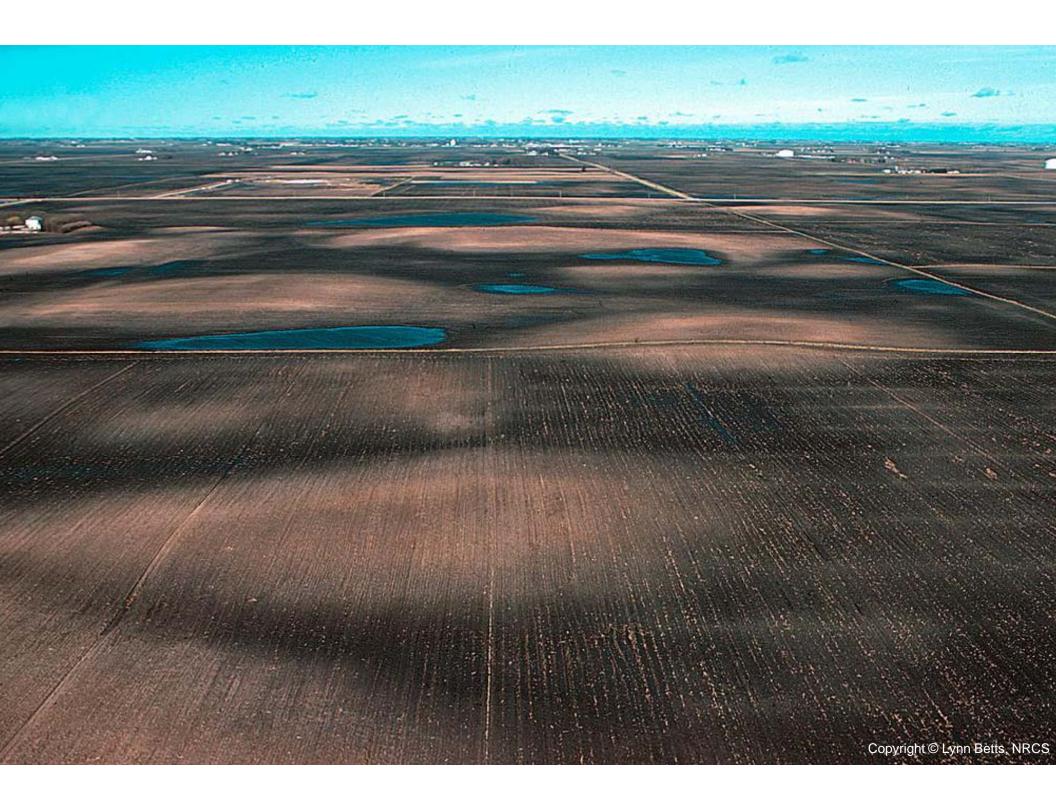
Fluid Fertilizer's Role in Sustaining Soils Used for Bio-fuels Production

John Kovar & Doug Karlen USDA-ARS National Soil Tilth Laboratory


http://www.ars.usda.gov/mwa/ames/nstl

Project Objectives

- To evaluate several S sources for corn grown on low organic matter soils
- To investigate nutrient dynamics in a comprehensive tillage, nutrient management, and residue removal study

Sulfur Response: Site Characteristics

- Eroded side slopes
- Loam/silt loam (Typic Haplaquolls)
- Corn after soybean
- N fertilizer applied at planting + spoke-wheel UAN (155 lb N/A)
- Corn (Fontanelle 4693) planted 5/6/08, 32K plants/A

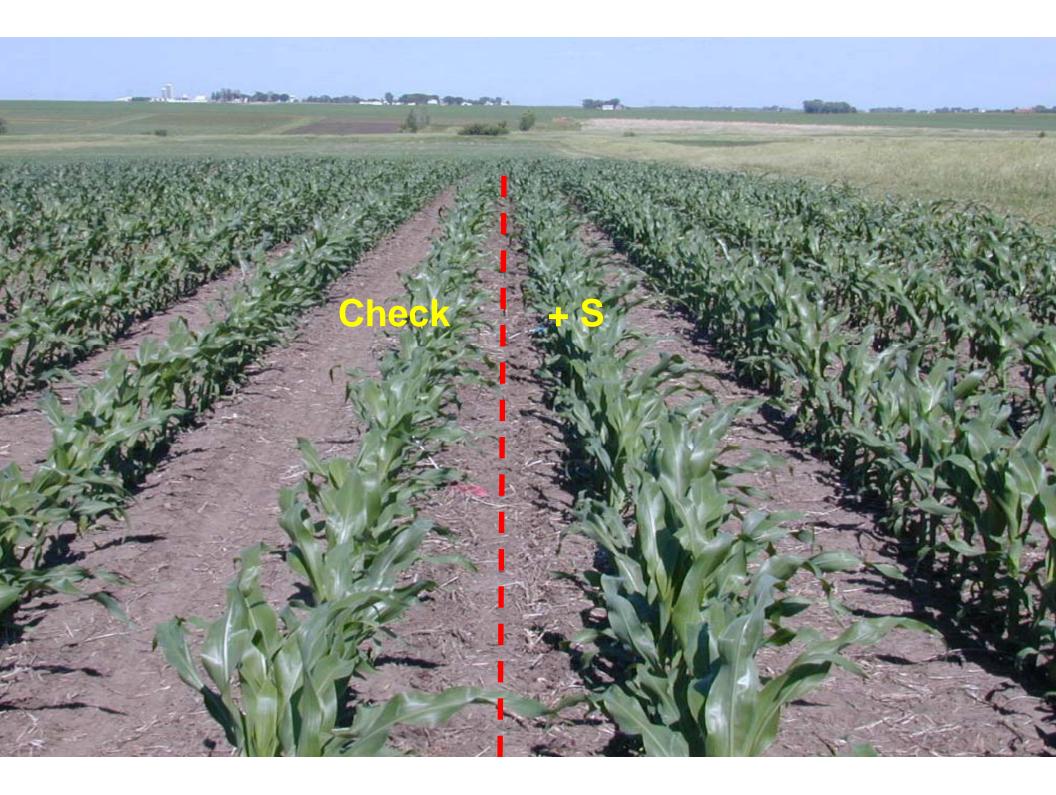
S Fertilizer Treatments

Control 30 lb S/A; 13-33-0-15S; 2x3 30 lb S/A; 21-0-0-24S; 2x3 30 lb S/A; 12-0-0-26S; 2x0

2008 Initial Soil Test Levels

Soil Test	Composite	Range
Bray-1 P, ppm	21 (H)	9 (L) – 36 (VH)
Exch. K, ppm	116 (L)	91 (L) – 177 (H)
Exch. Ca, ppm	2017	1379 – 2308
Exch. Mg, ppm	204	163 – 243
Extractable S, ppm	5.8	4 – 9
рН	6.9	5.6 - 7.6
Organic Matter*, %	2.3	2.0 - 2.6

* Ignition Method


Sulfur Response: Measurements

- Stand counts
- Whole-plant samples at V5
- Ear-leaf samples at mid-silk
- Grain yield and moisture
- Stover yield (whole-plant hand harvest)
- Grain and stover nutrient content

Effect of 30 lb S/A on Whole-Plant Dry Weight, and S, N, P, and K Tissue Concentrations at V5 in 2008

Trootmont	Dry	Nutrient			
Treatment	Weight	S	Ν	Р	K
	g plant ⁻¹	%			
Control	5.4b [†]	0.15b	2.40b	0.36a	3.73a
13-33-0-15S (SEF)	7.9a	0.17ab	2.64ab	0.39a	3.23a
21-0-0-24S (AMS)	6.6ab	0.19a	2.96a	0.33a	3.22a
12-0-0-26S (ATS)	7.0ab	0.18ab	2.50ab	0.32a	3.41a

*Values followed by the same letter are not significantly different at the 0.05 level.

Effect of 30 lb S/A on Corn Grain Yield, Grain Moisture, and Stover Yield in 2008

Treatment	Grain Yield [†]	Grain Moisture	Stover Yield
	bu/A	%	tons/A
Control	192	17.2	3.36
13-33-0-15S (SEF)	204	16.6	3.97
21-0-0-24S (AMS)	192	17.0	3.65
12-0-0-26S (ATS)	194	16.7	4.51
LSD (0.05)	7	0.7	0.69
LSD _(0.10)	5	0.6	0.56

†Yields adjusted to 15.5% moisture.

Removals of Sulfur (S) with Harvested Corn Grain and Stover in 2008

Treatment	S Re	Replacement	
	Grain	Residue	Cost
	lb	S/A	\$/A ‡
Control	7.7b [†]	1.9b	10.40
13-33-0-15S (SEF)	10.7a	2. 6a	14.41
21-0-0-24S (AMS)	9.3a	2.2b	12.46
12-0-0-26S (ATS)	9.9a	2.6a	13.54

*Values followed by the same letter are not significantly different at the 0.05 level.

‡Based on \$1.08 per lb S (January '09) as ammonium sulfate (\$520/ton).

S Fertility Management (3-yr)

- Greatest benefit on eroded hill slopes
- 30 lb S/A increased plant dry weight and S at V5
- At mid-silk, S concentrations often < sufficiency range
- Corn grain and stover yield increased, grain moisture decreased
- S fertilizers comparable
- Average response 6 bu/A at a cost of \$32/A for S

Upscaling

Bio-fuels Project Treatments

- Residue removal: 0, 50%, 90%
- Tillage: chisel plow, no-till
- Nutrient management: standard (30K plants/A), high input (44K plants/A)
- Bio-char: 0, 4.32 tons/A, 8.25 tons/A
- Cover crops: annual, perennial

Cob & Top 50% Removal

Whole Plant Removal

The Fill

Soil Test Levels

Soil Test	Fall 2005 [†]	Fall 2008 [‡]		
	Surface (0-6")	Surface (0-2")	Subsurface (2-4")	
Available P, ppm	33 (VH)	39	24	
Exch. K, ppm	128 (L)	199	142	
Exch. Ca, ppm	3498	2112	2276	
Exch. Mg, ppm	-	301	310	
Extractable S, ppm	-	1.0	0.9	
рН	6.2	6.5	6.5	
Organic Matter*, %	3.6	3.8	3.7	
[†] Mehlich 3 * Ignition Method [‡] Bray-1 / NH ₄ OAc				

Nutrient Management

Timing	Source
Fall 2007	11-52-0 + 0-0-60
Pre-Plant	10-10-10
	12-0-0-26S
Sidedress	32-0-0 (UAN)
Fall 2007	11-52-0 + 0-0-60
Pre-Plant	10-10-10
	12-0-0-26S
Starter	10-10-10 + UAN
Sidedress	UAN
	Fall 2007 Pre-Plant Sidedress Fall 2007 Pre-Plant Starter

Field Measurements

- Stand counts
- Whole-plant samples at V5
- Ear-leaf samples at mid-silk
- Grain yield and moisture
- Stover yield and moisture
- Grain and stover nutrient
 content

Effect of Management System on Whole-Plant N, P, K, and S Tissue Concentrations in 2008

System	Growth _ Stage	Nutrient				
		Ν	Р	К	S	
	%					
Conventional	V6	3.09	0.40	3.86	0.18	
Twin Row		2.81	0.36	3.72	0.16	
Conventional	Anthesis	2.53	0.33	1.86	0.17	
Twin Row		2.44	0.32	1.92	0.16	

Effect of Management System on Corn Grain Yield, Grain Moisture, and Stover Yield in 2008

Treatment	Grain Yield†	Grain Moisture	Stover Yield	
			50% Cut	90% Cut
	bu/A	%	tons/A	
Conventional	171	19.3	2.5	2.8
Twin Row	183	19.4	2.9	3.1

[†]Yields adjusted to 15.5% moisture.

Main Points:

• At V5, N concentrations below sufficiency range in whole plants, due to wet growing conditions

- At mid-silk, N and S concentrations below sufficiency range, K low
- Corn grain and stover yields numerically increased in twin-row system
- Nutrient removals within each system will guide
 2009 fertilizer applications

What's Next?

S research Nutrient management for bio-fuel feedstock production study (N, P, K, S, and B)

Some Challenges:

- Complicated nutrient management for bioenergy feedstock production?
- Amount of crop residue to sustain both the farming and ethanol production enterprises?
- Tillage, cover crops, other management questions?
- New soil test calibration/correlation?